1. Wheatley V., Kumar H., Huguenot P., On the role of Riemann solvers in Discontinuous Galerkin methods for magnetohydrodynamics, J. Comp. Phys., Vol. 229 (2010), pages 660-680 (PDF).
  2. Wheatley V., Kumar H., Jeltsch R., Spectral Performance of RKDG methods for Ideal MHD,  Mathematica Balkanica, Vol. 25-3 (2011), pages 257-276 (Link).  ( Also as SAM Report, see (PDF) .
  3. Harish Kumar, Siddhartha Mishra, Entropy Stable Numerical Schemes for Two-Fluid Plasma Equations, Journal of Scientific Computing, Vol. 52-2 (2012), pages 401-425 (PDF). (Also on ArXiv arXiv:1111.2424v1).
  4. Remi Abgrall and Harish Kumar,  Numerical approximation of a compressible multiphase system. Commun. Comput. Phys., 15 (2014), pp. 1237-1265 (Link).
  5. Remi Abgrall, Harish Kumar, Robust finite volume schemes for two-fluid plasma equations. Journal of Scientific Computing: Volume 60, Issue 3 (2014), Page 584-611 (Link).
  6. Asha Kumari Meena, Harish Kumar, and Praveen Chandrashekar, Positivity-preserving high-order discontinuous Galerkin schemes for Ten-Moment Gaussian closure equations, J. Comp. Phys, Vol. 339 (2017), pages 370-395 (PDF).


  1. Huguenot P., Kumar H., Wheatley V., Jeltsch R., Schwab C., Numerical Simulations of High-Current Arc in Circuit Breakers, 24th International Conference on Electrical Contacts (ICEC) (2008), Saint-Malo, France ( Also as SAM Report, see (PDF).
  2. Hiptmair R., Huguenot P., Jeltsch R., Kumar H., Schwab C., Torrilhon M., Wheatley V., Numerical Simulation of Compressible Magnetohydrodynamic Plasma Flow in a Circuit Breaker, International Conference on Numerical Analysis and Applied Mathematics, SEP 16-20, (2008), Psalidi, Greece, AIP Conference Proceedings, Vol. 1048, pages 21-22 (PDF).
  3. Kumar H., Finite Volume Methods for the Two-Fluid MHD Equations, Series in Contemporary Applied Mathematics Vol 18. Hackensack, NJ: World Scientific; Beijing: Higher Education Press. (Link) (Also as SAM Report, see (PDF).
  4. Kumar H., Jeltsch R., Three-dimensional Plasma Arc simulation Using Resistive MHD, Book Chapter: The Courant-Friedrichs-Lewy (CFL) Condition: 80 Years After Its Discovery, de Moura, Carlos A.; Kubrusly, Carlos S. (Eds.), Birkhuser Basel (2013) (Link).


  1. Kumar H., Masters Thesis: Hamilton-Jacobi Equations with Discontinuous Hamiltonian, (2004), IISc-TIFR, Bangalore, India.
  2. Kumar H., Three Dimensional High-Current Arc Simulations for Circuit Breakers using Real Gas Resistive Magnetohydrodynamics, Diss., Eidgenssische Technische Hochschule (ETH Zurich), Nr. 18460, (2009) (PDF).