Publications

Journal:

  1. Wheatley V., Kumar H., and Huguenot P., On the role of Riemann solvers in Discontinuous Galerkin methods for magnetohydrodynamics, J. Comp. Phys., Vol. 229 (2010), pages 660-680 (PDF).
  2. Wheatley V., Kumar H., and Jeltsch R., Spectral Performance of RKDG methods for Ideal MHD,  Mathematica Balkanica, Vol. 25-3 (2011), pages 257-276 (Link).  ( Also as SAM Report, see http://www.sam.math.ethz.ch/reports/2011/01) (PDF) .
  3. Harish Kumar, and Siddhartha Mishra, Entropy Stable Numerical Schemes for Two-Fluid Plasma Equations, Journal of Scientific Computing, Vol. 52-2 (2012), pages 401-425 (PDF). (Also on ArXiv arXiv:1111.2424v1).
  4. Remi Abgrall, and Harish Kumar,  Numerical approximation of a compressible multiphase system. Commun. Comput. Phys., 15 (2014), pp. 1237-1265 (Link).
  5. Remi Abgrall, and Harish Kumar, Robust finite volume schemes for two-fluid plasma equations. Journal of Scientific Computing: Volume 60, Issue 3 (2014), Page 584-611 (Link).
  6. Asha Kumari Meena, Harish Kumar, and Praveen Chandrashekar, Positivity-preserving high-order discontinuous Galerkin schemes for Ten-Moment Gaussian closure equations, J. Comp. Phys, Vol. 339 (2017), pages 370-395 (PDF).
  7. Chhanda Sen, and Harish Kumar, Entropy Stable Schemes For Ten Moment Gaussian Closure Equations, Journal of Scientific Computing (PDF).
  8. Asha Kumari Meena, and Harish Kumar, Robust MUSCL Schemes for Ten-Moment Gaussian Closure Equations with Source Terms, International Journal of Finite Volumes, Vol. 13 (2017), pages 1-28, (PDF)

Conference:

  1. Huguenot P., Kumar H., Wheatley V., Jeltsch R., Schwab C., Numerical Simulations of High-Current Arc in Circuit Breakers, 24th International Conference on Electrical Contacts (ICEC) (2008), Saint-Malo, France ( Also as SAM Report, see http://www.sam.math.ethz.ch/reports/2008/15) (PDF).
  2. Hiptmair R., Huguenot P., Jeltsch R., Kumar H., Schwab C., Torrilhon M., Wheatley V., Numerical Simulation of Compressible Magnetohydrodynamic Plasma Flow in a Circuit Breaker, International Conference on Numerical Analysis and Applied Mathematics, SEP 16-20, (2008), Psalidi, Greece, AIP Conference Proceedings, Vol. 1048, pages 21-22 (PDF).
  3. Kumar H., Finite Volume Methods for the Two-Fluid MHD Equations, Series in Contemporary Applied Mathematics Vol 18. Hackensack, NJ: World Scientific; Beijing: Higher Education Press. (Link) (Also as SAM Report, see http://www.sam.math.ethz.ch/reports/2010/29) (PDF).
  4. Kumar H., Jeltsch R., Three-dimensional Plasma Arc simulation Using Resistive MHD, The Courant-Friedrichs-Lewy (CFL) Condition: 80 Years After Its Discovery, de Moura, Carlos A.; Kubrusly, Carlos S. (Eds.), Birkhuser Basel (2013) (Link).

Thesis:

  1. Kumar H., Masters Thesis: Hamilton-Jacobi Equations with Discontinuous Hamiltonian, (2004), IISc-TIFR, Bangalore, India.
  2. Kumar H., Three Dimensional High-Current Arc Simulations for Circuit Breakers using Real Gas Resistive Magnetohydrodynamics, Diss., Eidgenssische Technische Hochschule (ETH Zurich), Nr. 18460, (2009) (PDF).
Advertisements